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Abstract

An essential part of describing the damage state and predicting the damage growth in

a multicracked plate is the accurate calculation of stress intensity factors (SIF's). Here, a

methodology and rigorous solution formulation for SIF's of a multicracked plate, with fully

interacting cracks, subjected to a far-field arbitrary stress state is presented. The fundamental

perturbation problem is derived, and the steps needed to formulate the system of singular

integral equations whose solution gives rise to the evaluation of the SIF's are identified. This

analytical derivation and numerical solution are obtained by using intelligent application of

symbolic computations and automatic FORTRAN generation capabilities (described in the

second part of this paper). As a result, a symbolic�FORTRAN package, named SYMFRAC,

that is capable of providing accurate SIF's at each crack tip has been developed and validated.
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- offset angle between inner tips of two parallel cracks

- direction cosines between two local coordinate systems

- strain tensor

- four roots of the characteristic equation
- Poisson's ratio

- far-field and total stress field, respectively

- components of stress in global coordinate system
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- angle defining orientation of local coordinate system
- normahzed real variables

- Fourier transform of Airy stress function with respect to x variable

- half crack length

- coefficients of strain-stress relationship (compliant matrix)

- auxiliary functions

- mode-I and mode-II stress intensity factors

- Fredholm kernels

- normal traction at crack surface

- shear traction at crack surface

- Fourier variable

- position vector defining the origin of a local coordinate system

- components of the position vector r_

- displacement associated with x and y coordinates, respectively

- weight function

- local and global coordinates

- kernel matrix

- functions of s in Fourier space (i.e., constants in x, y-real space)
- Young's modulus

- Airy stress function

- discrete auxiliary function

- loading vector

1 Introduction

In a wide range of materials damage progression is strongly connected with microcrack nucleation

and growth in solids. Hoagland et al. (1973), Leckie and Hayhurst (1974) and Meyers (1985),

observed that a large part of applied energy is dissipated because the microcracks extend the

fracture zone of a larger propagating crack. Similarly, Kachanov (1958) noticed that creep rupture

is caused by the accelerated growth and localization of microcracks in the material. Therefore, it

has been concluded that there must be a relationship between continuum damage mechanics and

fracture mechanics concepts as applied to the problem of a multicracked plate.

Historically, the solution of a multicracked plane problem is typically solved using one of two

techniques; the complex potential method ( see Horii and Nemat-Nasser (1985)) or the singular

integral equation approach (Erdogan (1978)). In this study we have selected the singular integral

equation technique because of our familiarity with the method and its successful application to a

number of plane problems; for example the work of Badaliance and Gupta (1976) on isotropic prob-

lems, Erdogan (1978) and Binienda et al. (1991) on anisotropic and homogeneous problems, and

Delale (1985) on nonhomogeneous problems involving one or two independent cracks. Although the

results for multicrack problems obtained using the singular integral equation approach in conjunc-

tion with the collocation technique are accurate, the required derivation of the system of singular

integral equations is lengthy and tedious, even for the simplest case.

One way to avoid this tedious derivation (long hours of searching for possible errors and the

inevitable "debugging" of a numerical program) is to design and develop a computer code that can

derive the system of singular integral equations symbolically and can automatically generate the

associated FORTRAN code required for the solution, by using the collocation technique. With such

a code a new class of problems can be analyzed more rigorously and efficiently.



This subject is coveredin two parts; Part I describesthe generalformulation and solution of
the stressintensity factors (SIF's) at the tips of n number of straight microcracksembeddedin
an infinite isotropic plate that is subjectedto in-plane loading and Part II (Arnold et al. (1992)),
describesthe symboliccomputational aspectsand numericalimplementation. We expect the sym-
bolic computational methodologyestablishedhereand in Part II for n straight cracksin an isotropic
plate to beeasily adaptedto ananisotropic material and, in the future, to more complicatedcrack
geometriesand nonhomogeneousmaterials. Part I concludeswith a comparison to validate the
accuracyof the results obtained with the presentformulation and those reported in the literature,

whereas other more complex examples, are presented in Part II (Arnold et al. (1992)).

2 Problem Formulation

Consider multiple cracks embedded in an infinite isotropic plate (Fig. l(a)). The plate is under

a far-field stress denoted by a_, (in particular a_x , a_.r, and a._r, where (X,Y) is the global

coordinate system), and the cracks are defined in their local frames (xj,yj) (Fig. l(b)). The origin

of each local frame is defined by the position vector U, and the orientation of the local frame with

respect to the global frame is defined by the angle qaj. Each crack is symmetrically situated within

its own coordinate system and is 2aj long, as shown in Fig. l(b).

The general solution formulation can be outlined in four basic steps. The first step is to derive

the local stress equations for each crack in its respective local coordinate system. This derivation,

which need be done only once, is achieved by defining the fundamental problem; that is a single crack

in an infinite isotropic plane (Fig. 1 (b)). The fundamental problem is then decomposed into two

subproblems: the problem of the undamaged plate containing an imaginary crack (Fig. 1 (c)) and the

perturbation problem (Fig. 1 (d)) of a plate with a single crack subjected to the appropriate crack-

surface tractions, which are found from the solution of the complementary undamaged problem. The

analysis of the perturbation problem leads to singular stresses that govern local crack tip behavior.

The second step is to formulate the total perturbation stress field for each crack, which includes

the interaction of all cracks through the summation of the transformed local stresses of all other

cracks. In the third step of the formulation, the total stress equations are normalized. A set of

Cauchy type singular integral equations, expressed in terms of unknown auxiliary functions, is

obtained by subjecting the total perturbation stress equations to the crack-surface traction field at

each crack location. The fourth and final step of the formulation is to express the SIF's in terms

of the discrete auxiliary functions, G_j(rp), evaluated at each crack tip. These discrete auxiliary

functions are obtained through the implementation of the Lobatto-Chebyshev collocation technique.

Now let us discuss each step in more detail.

2.1 Local Stress Formulation

Consider the fundamental problem (Fig. l(b)), which is defined as a single crack in an infinite

isotropic plate, whose solution can be obtained by decomposing it into an undamaged problem

(Fig. l(c)) and a perturbation problem (Fig. l(d)). The essence of this decomposition is that

the traction forces applied along the crack surface in the perturbation problem are opposite to the

obtained stress field of the undamaged plate at the particular location of the imaginary crack. As

a result, this undamaged traction field can be defined in terms of the normal (pj) and shear (qj)

stress components along the imaginary crack surface:

pj(xj) =%,,(xj,o) (1)
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qs(xs) = (2)
where

a_,v, (xS, O) = a°xx sin 2_0j + a_y cos 2_j _ a_r sin 291 (3)

Orx,y,(Xs,0) = aXX--a_'Y sin 2¢pj @O'_yCOS 2_Oj (4)
2

The mixed boundary conditions for the perturbation part of the fundamental problem (Fig.

1 (d)) are expressed in terms of stresses

a_j_j = -pj(xS) and a_,_, = --qs(xs) (5)

along the crack surface (i.e., yj = 0 and-a s < xj < aj), and in terms of continuity of displacements

v +=v- and u +=u- (6)

outside of the crack (i.e., yj = 0 and Izj'l > as). Here + indicates the value of displacement at a

point approached from the positive side of the plate, (i.e., y > 0), whereas - indicates the same

point approached from the negative side of plate, (i.e., y < 0).

The governing equation for the preceding two-dimensional isotropic plate problem can be ex-

pressed in terms of the Airy stress function FS(xj, YS) as

04F - 04F °94F = 0 (7)
Ox----W + 2 O--_--_y2 + cgy------_

Note: Any stress function that satisfies Eq. (7) and the mixed boundary conditions, Eqs. (5) and

(6), constitutes the solution to this problem.

A rigorous solution for this stress function can be obtained by employing the following Fourier
transformation relation

1
/__ _(s, y)e-'°_ds (8)F(x,y) = _ oo

thereby transforming the partial differential Eq. (7) into a fourth-order ordinary differential equation
with real constant coefficients:

2 d_¢ d4¢ 0 (9)
s4¢ - 2s _ + dy----_ =

A known general solution of Eq., (9) is

¢(s,y) =C e" (10)

Differentiating Eq. (10) and substituting the results into Eq. (9), gives the characteristic equation

tt 4 - 2_t 2 + 1 = 0 (ll)

whose roots are Pl = p2 = -pz = -/_4 = 1. Therefore, the Airy stress function has the following
form:

F(x,y) =/_: [(C/+ C_y)e v" + (C_ + C'4y)e -!'°] e-'°'ds (12)

In order to satisfy the physical requirement that the stress function is finite throughout the

domain of the plate, an alternative form is defined for the upper half plane (for y > O)

1KF(x,y +) = _ (C, + C_y)e-I'l%-i'_ds
O0

(13)



and for the lower half plane (for y < O)

F(z,y-) = _ (c3 + C,_)et'l_-"Zd_ (14)

which are automatically bounded at infinity. Note: Constants Cj for j = 1, 2, 3, and 4 are functions

of the Fourier variable s and are determined by using the local stress continuity conditions at the

boundaries between the half planes ( y = 0) and by using the perturbation boundary conditions

subsequent to the determination of the total stresses at each crack location.

The continuity conditions for local stresses, a_ and a_, are identically satisfied, given

F(z,O +) = F(x,O-) (15)

and
OF(x, 0 +)

Oy

respectively. Consequently, Eq. (15) gives

OF(x,O-)
Oy

(16)

c3= c, (17)

and Eq. (16), upon substitution of Eq. (17), leads to

C, = -2lslCa + C2 (18)

Completion of the posed mixed boundary value problem requires the formulation of the local

stresses and displacements. The local stresses in each half plane are obtained by taking the ap-

propriate (Timoshenko 1969) second derivatives of the stress function given in Eqs. (13) and (14).

Thus the stresses associated with the upper half plane are

oo

+ 1 f (s2C _ _ 21s1C2 + s2yC2)e-II'l_+i':']ds (19)

oo

+ 1 / s2(C ' + C2y)e_tl,lu+isXldsO'yy _- 27r

oo

+ _ i /% - 2-7 _(-I_lC_ + c_ -i_lyC,j¢-t_.',,,+'_.'ld_

and those associated with the lower half plane are

(20)

(21)

oo

_ 1
_:_ - 2-_,/ (s=C3 + 21sl64 + a2yC,)etl'lY-"_:lds

--00

(22)

O'zy

_ 1 f .s2(C3 "t- C4y)% = -2-7
--00

e[Islu-is_lds

0o

i f s(IslCa + C, + IslyC4)ett'l,_-'_'lds2rr

(23)

(24)



The displacementcomponents(u and v) associated with the = and Y directions, respectively,

are in turn obtained by integration of the appropriate strains, ,,

u(_,_) = f _=(x, u)dx (25)

which are related to the local stresses through the utilization of the generalized Hooke's law:

_== -- allO-=z -[- al2o'vv

(26)

(27)

where

and

_ -- a12tT== + all(7_v

v" 1
a12 = ---- , all =

E" /5"

v for plane stress | E .for plane stress

f

I/* --" I/ for plane strain E* = I E /o_ plane strain

(E is Young modulus and v is Poisson's Ratio).

As a result the upper half plane displacements are

(28)

(29)

(30)

0¢

U + = -a-/'/" f
2_

--00

[(szCa - 21slC2 + s_yC2)]e-tl°l"+_'=]d8
Oo

+ _ f °2 [Ca + C2y] e-II'lv+i°=lds2_ is

(31)

and
O_

v+ = ___az f [[siC, + c_(Isly - 1)] e-tl'lu+i°_]ds2r
--00

O0

+ _ f [I,IC, + c_(Isly+ 1)]e-tl,lv+i°_lds2_
--00

whereas the lower half plane displacements become

(32)

n
12

Oo

= -_"2. f _ [(s2C3 + 21siC, + s2yC,)] et'°i_-'°_lds
O0

+ _ f oA [Ca + C4y] ellol_-i°=lds2_r is
-- 00

(33)

and

oo

.- = _ f [l_lC_+ c.,(l_l_,+ 1)1ell°13,-i,.lds21r
--00

oo (34)
- _ f [l_lC_+ C,(l_ly - 1)]etlol_-,=la_2,r

It is important to note that the direct application of the stress and displacement boundary

conditions to the above equations would lead to a set of dual integral equations defined for the

stresses within the crack domain and for the displacements outside the crack domain. However, in

this form such a set of dual integral equations is unsolvable for the unknown constants Ca and C2



Upon substitution of Eqs.

auxiliary functions become

- hence, the introduction of the following auxiliary functions, from which a set of solvable singular

integral equations can be obtained. The typical form suggested in the literature (Badafiance and

Gupta 1976; and Erdogan 1978) for these auxiliary functions is,

f,(x) = _z[u+(x,0)- u-(z,O)]

= o)- o)]

(31-34) and Eqs. (17-18) into Eqs.

(35)

(36)

(35) and (36), respectively, the

1
A(z) = 4a,,_-_rf (s2C, - [s[C2)e-'"_ds (37)

BOO

f2(z) = -4a,,i 1 ] Isis C,e-"'ds (38)

--(X)

Expressions for the unknown constants Ca and 02 can be determined in terms of the above

auxiliary functions by inverting the Fourier transformations of Eqs. (37) and (38), where the

condition that f,(t) and f2(t) are nonzero only within the crack region (i.e., -a < t < a) has been

applied. Otherwise, outside the crack region these functions are zero owing to the displacement

perturbation boundary conditions; see Eq. (6). Therefore,

?Ca- 1 i f2(t)ei,tdt (39)
4a,i Isis a

Similarly, from Eqs.
functions:

4al, -_ a fl(t)ei'tdf + "s a f2(t)eistdf (40)

(17) and (18) 6'3 and 6'4 can also be expressed in terms of the auxiliary

]4a,----_ , f2(t)e_°tdt (41)

-1 [[s_f if ]C4 = 4al----_ ,, f_(t)eiStdt + -s a f2(t)eiStdt (42)

Substituting expressions for the constants Cj into the local stress equations, for example Eqs.

(19) to (21), results in the formulation of the set of double integral equations with respect to the

Fourier variables s (-0¢ < s < c¢) and t (-a < t < a). Integration of this set of double integrals

with respect to s, will involve expressions having the following recursive form:

11 = f_ ePSds where p = p(z, -y, t)
a I .. (43)

I,_=_ ,_-1 for n=2,3,

The result of the preceding integration (Gradshteyn and Ryzhik 1980) is

I, (-1)"= for n=1,23,... (44)
pn



For the details of this integration process see Part II (Arnold et al. (1992)). Integrating with respect

to s will give a set of singular integral equations with respect to t, which are valid for any jta crack

within its own local coordinate system (xj, yj) :

a(J)
zj ;F 3 4_H '-o, t [[y_+ (tj - _j)_]_

-yj;,(tA [ y_-(tj - _j)_

1 ]+ 2 (t_- zj)2Yj + --

- y_ + (tj dtj

(45)

.., 1;.{ [ < , ]
u,u, - 4rall a, fj2(tj)(tj - xj) [y_ + (tj - xj)2] 2 + yff + (tj - xj) 2 (46)

u_- (ti - xj)2 } dtj+yjfjl(tj)[y_ + (tj -- Xj)2] 2

a,j,-1/;:,{[ 1 ]='"- 4_ra-'--1, f_,(tj)(tj - zj) [y_ + (_Y_ zj)a]2- y_ + (t:_ zj)'

(47)

This completes the formulation of the fundamental problem (or local stress state) for the jth crack.

Henceforth, the formulation of the multiple crack problem will be addressed.

2.2 Total Stress Formulation

The total stress state j(aTz) for the jth crack is defined as the local stress state of the jth crack

(a_z) plus the contribution to that stress state of all remaining cracks. This may be represented

mathematically as

n-I

,_T_(x_,yj) J - 'p= _,_(x_,y_)+ 5-:. yj),yp(zj,yj)]a,,[x_,(xj, (48)
p=l

for j = 1, ..., n. Here standard tensor transformation is incorporated, a',, = _l_fl,_(rl,_ and _t,, fl,_)

are the direction cosines between the (xj, yj) and (xp, yp) coordinates with p identifying the remain-

ing cracks (see Part II). Note: This statement does not imply that the concept of superposition has

been invoked, since the stress perturbation boundary conditions (see Eqs. (5)) have not yet been

utilized to determine the unknown auxiliary functions.

For functional compatibility within Eq. (48), coordinate transformations must be simultaneously

applied to all remaining (pth) crack coordinate variables. As a result, the dominant term (i.e., the

first term of Eq. (48)) possesses a singularity whereas terms within the summation lose their original

singularities and yet still contribute to the total stress state, as one might expect. The coordinate

transformation between the (xj, yj) and (xp, yp) systems is determined from the following geometric

relationship (see Fig. 2):

rjx + xjcos_j - yjsin_j = rpx + zpcos_ - yvsin_ (49)

rjv + xisinq; _ + yjcos_j = rlw + xpsinqap + yr,cosqa_, (50)

where rjx, riy are the rectangular components of the j_h crack position vector referred to the global

coordinate system X - Y, and q_j is the angle of rotation between the global and local systems (see

Fig. 2). By rearranging Eqs. (49) and (50), one obtains



z_ = (r:, - r_y)sin:p + (rjx - rpx)cos_,r
+z_ cos(:_ - _p) - yj sin(_j - _p)

(51)

+_j sin(:j - Vp)+ U_cos(vj - V,)
(52)

2.3 Singular Integral Equations Formulation

Since the total stress state at each crack location has been formulated, the appropriate stress

boundary conditions (Eqs. (5)) can be applied. As a result, 2n singular integral equations are

obtained with 2n unknown auxiliary functions. With the collocation technique, these unknown

auxiliary functions can be determined in a discrete sense. The collocation technique, however,

requires that the interval of integration be from -1 to 1 and not from -a to a, as in Eqs. (45-47). In

order to accomplish this normalization, the following variable substitution, involving the actual jth

crack length a j, is employed:

x, = aj_ (53)

tj = air (54)

where the _ and r are between -1 and 1.

The formulation of this system of singular integral equations is complete once the single-value

conditions for the auxiliary functions, foj, are chosen. In the case of straight cracks, this single-value

condition (Erdogan 1978) is:

f'__f,j(_-)dr = 0 (55)
1

where j stands for the jth crack and r/takes on the value of 1 or 2.

For example, for the case of an isotropic plate with two cracks, the system of four singular
T and T stressintegral equations normalized by Eqs. (53 and 54) is obtained by using the ay_ a_

components of Eqs. (48) so that

and

_dr +.[1_, ker_]f2,dr + f/, ker _f22} (56)

--dr + ker_f2_dr + ker _2f22

2a_u- 4ai, , r-_ +

2a_- 4an 1 r-_ +

, ker_f_,dr + , ker_f_2 (58)

:_ /; }l 22 22
ker nfndr + ker 12fl 2 (59)

1 1

where ker._ are the Fredholm kernels (Erdogan 1978) and a,_, 7,8 = 1,2. The above eight kernel

functions can be represented by four independent relations, given that 0 = -0 (where O = _'2 - _h).

For example, ker_] = ker_], ker_ = ker_, ker,2_ = kern ,22 and ker_ = ker 22_2.



For the case when n cracks exist, each singular integral equation would contain more integral

terms and their associated kernels, thereby giving rise to a system of sihgular equations of dimension

2n. Note that all of the required kernels for a multiple crack problem will differ from the four kernels

found for the case of two cracks only by a position vector. Therefore, we can rewrite the total stresses

(trv_ and tr_) for n cracks as follows

T _ 1 {£a ker 1friar + fl_l ker 2fl,dr. axy _

+...+ £, + +
(60)

-%uT = _ {fl I kerzfndr + £1 ker4f12dr (61)

+... + fl kerzf(,,_o,d r + f_, ker,h,,_l)2d r + __£, j___dr}

(see the appendix for the four independent kernels (ker_ for i = 1, ...,4)), and we can associate

kerl = ker n ker2 = ker_, ker3 = ker_, and ker4 = ker_] for the case of two cracks. An21,

equivalent association, with differing position vectors, can be done for the case of n cracks. This

completes the formulation of the system of singular integral equations.

2.4 Solution for the Stress Intensity Factors

The integral equations obtained are of the Cauchy type; thus, for sharp cracks the stresses

and strains will have a square-root singularity and the classic definition of SIF may be used (see

Badaliance and Gupta 1976; Delale and Erdogan 1977 and 1979; and Delale et al. 1977). Therefore,

the modes I and II SIF's for the jth crack are

k_(1) = _in_(2(_- 1)]½ {jau_(_,O)}

ki(1 ) = _iml(2({- 1)]½ {i_r=_(_,O)}

(62)

(63)

T
ki(-1 ) = lim [-2(1 + _)1½ {jauu((,O)} (64)

_--*-1

ki(-1) = tim [-2(1 + _)1½ {jaS(_,0)} (65)

where the normal and shear stresses, Eqs. (60 and 61), are used.

It is well known (Erdogan 1978) that the auxiliary functions (f) can be expressed as a product

of the unknown hounded functions (G) and the known singular weight functions w:

f(r)-'G(r)w(r)

The singular weight function w for a sharp crack is

w(T) = 1)-½

(66)

(67)

Erdogan (1978) found, for example, that in the case of a Cauchy-type singular integral equation

(Eqs. (60) and (61)), the dominant part can be expressed in terms of the function G evaluated at

the tips of the jth crack:

_ eOr/2 _._l_rr a, r-(f_jdr - G"s(-1)--_ -(r + l)-½ -G"s(1) (r-1)-½ + O(r) (68)

10



where ,7 is 1 or 2 and O(r) is the higher order term, which in subsequent calculations is neglected.

The substitution of Eqs. (68) for the dominant parts (the last term in Eqs. (60) and (61)) of the

normal and shear components of the total stresses in Eqs. (62-65), and subsequent evaluation of

the limits at the crack tips, results in the redefinition of the SIF's (normalized with respect to v/_

and a_p) expressed in terms of the functions G,j:

kJ(1) = 1 G2i(1)V/_j/a ' (69)
4an

1D

G,j(1 )vf_j/a, (70)
k_(1) = -- 4al---_

1

kf(-1) = 4- 7,c2j(-1)vqd., (71)
1

k{(-1)= (72)

The Lobatto-Chebyshev collocationintegrationtechnique isknown to provide excellentresults

when dealing with Cauchy-type singular integral equations and so it was used. The unknown

function Gnj isdetermined at a discreteset of points rl, r2,...,rmcalled abscissas. In this way,

each integral equation is reduced to a set of algebraic equations with unknowns G_j(r_), Gnl (7"2),...,

Gnj(vm), which are the discrete values of the functions Gni; hence its name, a discrete auxiliary

function. Each of the singular integral equations subjected to the stress boundary conditions (Eqs.

5), is replaced (see Erdogan 1978) by m- 1 algebraic equations with 2nm unknown parameters:

1 C--.G,s(_'.)w. 2 ...
-- 2--4 --" (73)

6=1 r=l

where z,)_ = 1, ..., n; c_,_,7,_,r/ = 1,2; po = {q°po ijif ,7=2,n=1"_(z = 1, 2, ..., rn - 1) are collocation

points chosen in such a way that _ 7_ r_; w_ = the weighting constants of the related integration

formula and Rein = the remainder. For m sufficiently large, Rein can be made as small as necessary

for the desired accuracy and consequently can be neglected.

In the Lobatto-Chebyshev method, the abscissas are c_lculated according to

(r - 1)r
r,=cos for r= l,...,m (74)

rn-I

with the corresponding weights given by

7r 7f

wl =win-- 2(m-l) and w_- 1m

the collocation points are then found by using the formula

for r = 2, 3, ..., m - 1 (75)

(2z - 1)r
_, = cos for z = 1,2, ..., m - 1 (76)

2m - 2

In order to have the complete system of 2nm algebraic equations, the single-value conditions (Eqs.

(55)) are also expressed by using the collocation technique:

m

__. a,_( r, )w, = 0
r=l

Thus, the resulting system of algebraic equations can be written in the form

(77)

ll



[A]{G}= {T¢} ', (78)

where [A] is a fully populated 2rim x 2rim matrix of coefficients and {T_} is the loading function

vector; see Part II (Arnold et al. (1992)) for details.

The unknown parameter vector {G} can be determined through inversion of the [A] matrix;

thus,

{G} = [A]-I{T¢} (79)

although only the appropriate values (i.e., Gnj (4-1)) are used to calculate the SIF's for the jth crack

(see Eqs. (69-72)).

Automatic generation of the associated FORTRAN code (see Part II, Arnold et al. (1992)) for

the evaluation of Eq. (79) completes the development of the solution for any multicrack problem.

This FORTRAN program was utilized to obtained the following results, which are compared with

results obtained from other methods existing in the literature.

3 Numerical Application

In order to validate the results obtained using the SYMFRAC code, the well-known problem

of two parallel interacting cracks is considered here. The plate with two cracks of length 2a is

subjected to a normal stress field (a_y) as shown in Fig. 3. The location of the cracks are defined

by the distance rd between inner crack tips and the offset angle c_.

This problem has been solved for mode I SIF's and cr > 0 by Isida (1976), who used a Laurent

series expansion that gave less than 2-percent error; by Yokobori et. al. (1971), who used a

continuously distributed model that gave results within 5-percent error; and by Yijun and Atilla

(1991), who used an approximate stress field model that gave less than 10-percent error. For the

case of the collinear cracks (c_ = 0), an exact solution was obtained by Erdogan (1962) and later by

Horii and Nemat-Nasser (1985) using the approximate method of pseudo-tractions.

In Table I the SlF's at the inner crack tips from Isida (1976), Yokobori et al. (1971), and Yijun

and Atilla (1991) are compared to those of the present method for the noncollinear case (i.e., a > 0).

Similarly, in Table II the results for the SIF's from Horii and Nemat-Nasser (1985) and Erdogan

(1962) are compared to those of the present singular integral technique for the collinear case (i.e.,

cr = 0) at both the inner and outer crack tips.

Table II shows that the exact results given by Erdogan (1962) and the results from using the

pseudo-traction method (Horii and Nemat-Nasser 1985) agree exactly with the results given by the

present singular integral technique. This implies that the error introduced by solving the system of

singular integral equations with the collocation technique is minimal.

Also, in the case of noncollinear cracks the SIF's calculated by the present method are closest to

the most accurate results of Isida (1976) for the specific cases addressed. We strongly believe that

the present method is the most accurate because of the minimum number of assumptions required

for the solution and its favorable comparisons. This fact is further borne out by the observation

that the most approximate method of Yijun and Atilla (1991) gives the smallest SIF's for the closest

crack tip distance, whereas the present method gives the highest values.
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4 Concluding Remarks

A rigorous formulation has been presented and validated for calculating the SIF's of a mult-

icracked isotropic medium. The size, orientation, and distribution of all cracks were considered

to be independent parameters of the solution. The formulation was constructed in such a way

that a symbolic/numeric system (named SYMFRAC, see Part II (Arnold et al. (1992))), capable

of automatically formulating the required system of singular integral equations for a multicrack

boundary value problem and generating the associated FORTRAN code, can be developed and uti-

lized. Extension to anisotropic and/or nonhomogeneous materials, as well as more complex crack

geometries, would require modifications of the governing equations, boundary/continuity condi-

tions, constitutive relations, and such. Although the final results would be significantly different,

the symbolic/numeric procedure developed here would remain the same. Because of symbolic imple-

mentation, the solution of the more complex problems would be a straightforward and automated

procedure. With this capability, numerous parametric studies could easily be performed to analyze

the contribution of each parameter on the local stress field as well as the characteristics of the

damage progression in a material.

Future work will attempt to generate such solutions and to generate the required data base

necessary to establish a link between continuum damage mechanics and linear elastic fracture me-

chanics by homogenizing the effects of interacting distributed cracks into macrodamage models for

isotropic and anisotropic materials and for more complex crack geometries . These macrodamage

models can than be efficiently coupled with the finite element method in order to analyze structural

problems.

13



Appendix- Analytical Form of the Fredholm Kernels

a' [ -sin20(m + a(sinO)[(a'r-- w - a(cos0)_ - (p2+ a(sinO)21
ker 1

2co_20(a'_- V. - ._co,O)(m + .¢,inO)_
[(p_+ .¢_inO)_+ (.'_ -- Pl -- ._co_0)']'

--sin20(p2 + a_sinO) - cos20(a'r - Pa - a_cosO) I

(v_+ ._,i_o)_ + (.,_ - v_ - ._o,o)_ l

(A1)

a' f cos20(p2 + a(sinO)[(atr - p_ - a(co,O) 2 - (P2 + a(sinO)2l

[(P2+ a(sinO)2+ _ ---_1- a(cosO)2]2 J

(A2)

ker3 = a_f -2sin20(p2 + a_sinO)2(a'r- pl - a(cosO)
[ [(p2+ ._i.O)_ + (a'_ - p, - a_o_O)q_

cos20(p2+ a(sinO)[(atr - p_ - a(cosO)_ - (p2+ a(sinO)2]
[(p_+ _i_o)_ + (_,_ - p, - ._o_O)q_

2sin20(p2 + a_sinO) + sin20(atr - Pl - a_cosO) "[

(p_+ a_O)2 + Cjr;--_ -a-_£@ f

(A3)

a'{ker 4 = --
7r

where

Pl

P2

and 0 = _' -

-sin20(p2 + a(sinO)[(a'r - pa - a(cosO) 2 - (P2 + a(sinO) 2]

[(P2 + a(sinO) 2 + (a'r - px - a(cosO)2] _

2cos20(a'r - pa - a_cosO)(m + a(sinO) _
+

[(p_+ ._.i_o)_ + (.,_ - p. - ._o,0)_1_

(a'r - p, - a(cosO) I

I

= (,.,,- ,._,),in_,'+ (,..- ,-,_,)_o,,,,'

= (,._- ,.,,,)_o,_,'- (,-. - ,-.,),in_'

(A4)

(AS)

(A6)
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Table I: Mode-I Normalized SIF's for Inner Tips of Noneollinear Cracks

Offset angle,

Ot 1

degrees

45

45

45

rd
a

1.41

2.82

4.24

Yijun and
Atilla

(1991)

1.03o5

1.0135

1.0051

38.66 1.28 1.0360

38.66 2.56 1.0184

38.66 3.84 1.0046

From literature

Yokobori

etal.

(1991)

1.0606

1.0533

1.0350

1.0920

1.0603

1.0355

Isida"

(1976)

Present

method

1.12 1.1254

1.04 1.0489

1.02 1.0254

1.13 1.1317

1.05 1.0551

1.03 1.0302

' Results taken from graph in literature

Table II: Mode-I Normalized SIF's at Inner and Outer Crack Tips of Collinear Cracks

r4
a

From literature

Horii and

Nemat-Nassr

(1985)

Erdogan

(1962)

Present

method

Inner Outer Inner Outer Inner Outer

0.220 ...... 1.45387 1.11741 1.45387 1.11741

0.500 1.2289 1.0811 1.22894 1.08107 1.22894 1.08107

0.857 1.1333 1.0579 1.13326 1.05786 1.13326 1.05786
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Fig. 1. Multicracked plate geometry and the method of solution; (a) Multicracked plate,

(b) Fundamental problem for jth crack, (c) Undamaged plate, (d) Perturbation

problem.
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y Xp cos_p - yp sin_p ,,

sin_p ypXp + cos_

xj sincpj, yj cos_j

xj cosq_ - yj sin_pj

X

Fig. 2. Geometric relations between a pair of cracks and their local variables.
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2a

Fig. 3. Problem of two crack under normal stress field conditions.
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